Advances in Possible Orders of Circulant Hadamard Matrices, and Sequences with Large Merit Factor

Jason Hu\(^1\) Brooke Logan\(^2\)

\(^1\)Department of Mathematics
University of California, Berkeley

\(^2\)Department of Mathematics
Rowan University

August 7, 2014
Outline

Introduction
 Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices
 Restrictions on n
 Ascending Wieferich Prime Pairs
 Descending Wieferich Prime Pairs
 Comparing results

New Family of Binary Sequences
 Note: A generalization of Galois sequences

New Family of Polyphase Sequences
 L^4 norms of polynomials
 Merit Factor Comparisons
Introduction

Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices
Restrictions on n
Ascending Wieferich Prime Pairs
Descending Wieferich Prime Pairs
Comparing results

New Family of Binary Sequences
Note: A generalization of Galois sequences

New Family of Polyphase Sequences
L^4 norms of polynomials
Merit Factor Comparisons
Autocorrelations

Definition (Aperiodic Autocorrelation)
of a sequence of length n at shift k, $0 \leq k < n$ is

$$c_k = \sum_{i=0}^{n-1-k} a_i \bar{a}_{i+k}$$

Definition (Periodic Autocorrelation)
of a sequence of length n at shift k, $0 \leq k < n$ is

$$\gamma_k = \sum_{i=0}^{n-1} a_i \bar{a}_{i+k \mod (n)}$$
Barker Sequences

Definition

A *barker sequence* is a binary sequence \(\{a_0, a_1, ... a_{n-1}\} \) of length \(n \) such that when calculating the sequence’s aperiodic autocorrelation at shift \(k = 0 \), \(c_0 = n \) and for shift ranging from \(1 \leq k < n \) the aperiodic autocorrelation is \(|c_k| \leq 1 \)
Example (\(\{1, 1, -1\}\))

\[
\begin{align*}
c_0 &= \sum_{i=0}^{3-1-0} a_i a_{i+0} = 1(1) + 1(1) + (-1)(-1) = 3 \\
c_1 &= \sum_{i=0}^{3-1-1} a_i a_{i+1} = 1(1) + 1(-1) = 0 \\
c_2 &= \sum_{i=0}^{3-1-2} a_i a_{i+2} = 1(-1) = -1
\end{align*}
\]

Barker Sequence!
Barker Conjecture

There exists no Barker sequence of $n > 13$

Proven for

- n of odd length
- even $n = 3979201339721749133016171583224100$ or $n > 4 \times 10^{33}$

(P. Borwein & M. Mossinghoff, 2014)
Introduction

Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices

Restrictions on n
Ascending Wieferich Prime Pairs
Descending Wieferich Prime Pairs
Comparing results

New Family of Binary Sequences

Note: A generalization of Galois sequences

New Family of Polyphase Sequences

L^4 norms of polynomials
Merit Factor Comparisons
Circulant Hadamard Matrices

Definition (Hadamard Matrix)
An $n \times n$ matrix H of ± 1 where $HH^T = nI_n$

Definition (Circulant Matrix)
A matrix where each row after the first row is one cyclic shift to the right of the previous row.

Example (Circulant Hadamard Matrix)

\[
\begin{pmatrix}
+ & + & + & - \\
- & + & + & + \\
+ & - & + & + \\
+ & + & - & + \\
\end{pmatrix}
\]
Circulant Hadamard Matrices

Definition (Hadamard Matrix)
An $n \times n$ matrix H of ± 1 where $HH^T = nI_n$

Definition (Circulant Matrix)
A matrix where each row after the first row is one cyclic shift to the right of the previous row.

Example (Circulant Hadamard Matrix)
\[
\begin{pmatrix}
+ & + & + & - \\
- & + & + & + \\
+ & - & + & + \\
+ & + & - & +
\end{pmatrix}
\begin{pmatrix}
+ & - & + & + \\
+ & + & - & + \\
+ & + & + & - \\
- & + & + & +
\end{pmatrix}
= \begin{pmatrix}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{pmatrix}
\]
Relationship between Barker sequences and Circulant Hadamard matrices

Definition (Circulant Hadamard Conjecture)
There exists no Circulant Hadamard Matrix with $n > 4$

Barker Sequence \Rightarrow small aperiodic autocorrelations \Rightarrow small periodic autocorrelations \Rightarrow Circulant Hadamard Matrix
Introduction
Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices
Restrictions on n
Ascending Wieferich Prime Pairs
Descending Wieferich Prime Pairs
Comparing results

New Family of Binary Sequences
Note: A generalization of Galois sequences

New Family of Polyphase Sequences
L^4 norms of polynomials
Merit Factor Comparisons
Introduction

Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices

Restrictions on \(n \)

Ascending Wieferich Prime Pairs

Descending Wieferich Prime Pairs

Comparing results

New Family of Binary Sequences

Note: A generalization of Galois sequences

New Family of Polyphase Sequences

\(L^4 \) norms of polynomials

Merit Factor Comparisons
Restrictions

- By Definition of a Hadamard Matrix
 - Must be a multiple of 4 (or $n = 1, 2$)
- Turyn, 1965
 - Assuming $n > 2$ then
 - $n = 4m^2$
 - m is odd
 - m cannot be a prime power
 - More to come
\[n = 4m^2 \]

When searching in a given bound \(M \):

\[m = p_1 p_2 \cdots p_u \leq M \] (1)

Theorem (Turyn)

\[p \leq (2M^2)^{\frac{1}{3}} \]
\[n = 4M^2 \]

When searching in a given bound \(M \):

\[p_1 \rightarrow p_2 \rightarrow \ldots \rightarrow p_1 \]
Introduction
Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices
Restrictions on n
Ascending Wieferich Prime Pairs
Descending Wieferich Prime Pairs
Comparing results

New Family of Binary Sequences
Note: A generalization of Galois sequences

New Family of Polyphase Sequences
L^4 norms of polynomials
Merit Factor Comparisons
Links

- Ascending: \(q \rightarrow p \)

 \[q < p \text{ and } q^{p-1} \equiv 1 \mod p^2 \]

- Descending: \(p \rightarrow q \)

 \[q < p \text{ and } p^{q-1} \equiv 1 \mod q^2 \]

- Flimsy: \(p \bowtie q \)

 \[q \mid (p - 1) \]
Types of Ascending Pairs

Different Cases \(q \leftrightarrow p \)

- **Worst Case Scenario**
- Previous Search \(M = 10^{13} \)
- \(q < p \leq \min\left(\frac{M}{q}, (2M^2)^{\frac{1}{3}}\right) \)

\[
M = 5 \times 10^{14}
\]
Types of Wieferich Prime Pairs

Double Wieferich Prime Pair | Ascending and Flimsy | Strictly Ascending
Double Wieferich Prime Pair $q \Leftrightarrow p$

$$q < p \leq \min\left(\frac{M}{q}, (2M^2)^\frac{1}{3}\right)$$

Theorem (W. Keller & J. Richstein)

Let p_1 be a primitive root of the prime q and define $p_2 = p_1^q \mod q^2$. Then $\{p_2^m \mod q^2 : m = 0, 1, ..., q - 2\}$ represents a complete set of incongruent solutions of $p^{q-1} \equiv 1 \pmod{q^2}$, each of which generates an infinite sequence of solutions in arithmetic progression with difference q^2

$$p^{q-1} \equiv 1 \mod q^2$$
Example

- \(q = 83 \)
- \(p_1 = \text{PrimitiveRoot}(q) = 2 \)
 - Primitive root generator of the multiplicative group mod \(p \)
- \(p_2 = p_1^q \mod q^2 = 1081 \)
- \(p_2^m \mod q^2, m = 0, 1, \ldots, \frac{q-3}{2} \)
- Even case: \(a = (p_2)^m + q^2 \) and \(b = q^2 - a \)
- Odd Case: \(a = (p_2)^m \) and \(b = 2q^2 - a \)
- \(a, a + 2q^2, \ldots \),
- \(m = 37 \implies a = 4871 \)
Ascending and Flimsy $q \rightarrow p$ and $p \rightsquigarrow q$

$q < p \leq \min\left(\frac{M}{3q}, (2M^2)^{\frac{1}{3}}\right)$

$q|(p - 1)$

$q^{p-1} \equiv 1(\text{mod } p^2)$
Special Ascending

Double Wieferich Prime Pairs

\[3 \leftrightarrow 1006003 \]
\[5 \leftrightarrow 1645333507 \]
\[83 \leftrightarrow 4871 \]
\[911 \leftrightarrow 318917 \]
\[2903 \leftrightarrow 18787 \]

Ascending and Flimsy

\[3 \rightarrow 1006003 \]
\[5 \rightarrow 20771 \]
\[5 \rightarrow 53471161 \]
\[13 \rightarrow 1747591 \]
\[44963 \rightarrow 5395561 \]
Strictly Ascending

$$(3 \rightarrow 11 \rightarrow 71 \rightarrow 3) \rightarrow \ldots \rightarrow (q \rightarrow p)$$

$$r \rightarrow q \rightarrow p \rightarrow r$$
Strictly Ascending

\[q < p \leq \frac{M}{3 \times 11 \times 71 \times q} \]

\[r \rightarrow q \rightarrow p \rightarrow r \]
Strictly Ascending

\[q < p \leq \frac{M}{3 \cdot 11 \cdot 71 \cdot q} \]

\[q < p \leq \frac{M}{r \cdot q} \]

\[q < p \leq \frac{M}{q^2} \]
Strictly Ascending

\[q < p \leq \min(\max\left(\frac{M}{3 \times 11 \times 71 \times q}, \frac{M}{r \times q}, \frac{M}{q^2}\right), (2M^2)^{\frac{1}{3}}) \]
Introduction
Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices
Restrictions on n
Ascending Wieferich Prime Pairs
Descending Wieferich Prime Pairs
Comparing results

New Family of Binary Sequences
Note: A generalization of Galois sequences

New Family of Polyphase Sequences
L^4 norms of polynomials
Merit Factor Comparisons
1: List A and List $B = \text{All primes in Ascending Pairs}$
2: while Length $B > 0$ do
3: for $p \in B$ do
4: for All Primes, q, such that $3 \leq q < p$ do
5: if $p^{q-1} \equiv 1 \mod q^2$ then
6: Add (p, q) to solid link list and add q to T
7: else if $q | (p - 1)$ then
8: Add (p, q) to flimsy link list and add q to T
9: end if
10: end for
11: end for
12: $B = T/A$, $A = A \cup B$, and Clear T
13: end while
Introduction
Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices
Restrictions on n
Ascending Wieferich Prime Pairs
Descending Wieferich Prime Pairs
Comparing results

New Family of Binary Sequences
Note: A generalization of Galois sequences

New Family of Polyphase Sequences
L^4 norms of polynomials
Merit Factor Comparisons
Comparing results

<table>
<thead>
<tr>
<th></th>
<th>10^{13}</th>
<th>5×10^{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertices</td>
<td>643931</td>
<td>15342</td>
</tr>
<tr>
<td>Ascending</td>
<td>59837</td>
<td>6616</td>
</tr>
<tr>
<td>Descending</td>
<td>1673025</td>
<td>33935</td>
</tr>
<tr>
<td>Flimsy</td>
<td>1729116</td>
<td>33264</td>
</tr>
</tbody>
</table>
Creating Circuits

- Johnson’s Circuit Finding Algorithm and Augmenter = 501630
- F Test
 - $M = 10^{13}$ cycles 2064
 - $M = 5 \times 10^{14}$ cycles 6683
- Turyn Test
- Leung Schmidt Test Theorem 1,5,10
\(v_p(m) = \) multiplicity of \(p \) in factorization of \(m \)

\(m_q = q\)-free and squarefree part of \(m \): \(m_q = \prod_{p|m, p \neq q} p \)

\(b(p, m) = \max_{q|m, q \leq p} \{ v_p(q^{p-1} - 1) + v_p(\text{ord}_{m_q}(q)) \} \)

\(F(m) = \gcd(m^2, \prod_{p|m} p^{b(p,m)}) \)

Theorem

If \(n = 4m^2 \) is the order of a circulant Hadamard matrix, then \(F(m) \geq m\phi(m) \)
Turyn Test

Definition
a is semi-primitive mod b: \(a^j \equiv -1 \mod b \) for some j

Definition
r is self-conjugate mod s: For each \(p | r \), p is semi-primitive mod the p-free part of s.

Theorem
If \(n = 4m^2 \) is the order of a Circulant Hadamard Matrix, \(r | m, s | n, \)
gcd\((r, s)\) has \(k \geq 1 \) distinct prime divisors, and r is self-conjugate mod s, then \(rs \leq 2^{k-1}n \)
Turyn Test

Theorem

If \(n = 4m^2 \) is the order of a Circulant Hadamard Matrix, \(r \mid m, s \mid n, \)
gcd\((r, s)\) has \(k \geq 1 \) distinct prime divisors, and \(r \) is self-conjugate mod \(s \), then \(rs \leq 2^{k-1}n \)

\[
L_m = \{ p_1, p_2, \ldots, p_u \}
\]

\[
L_n = \{ 2, 2, p_1, p_2, \ldots, p_u, p_1, p_2, \ldots, p_u \}
\]

Let \(\alpha \in L_m \) and \(\beta \in L_n \)

Take \(\alpha \cap \beta \)

If \(rs > 2^{k-1}n \) and \(r \) self-conjugate mod \(s \) \(\Rightarrow \) throw it out
Cycles that Fail

<table>
<thead>
<tr>
<th>Length</th>
<th>Starting Value</th>
<th>Turyn</th>
<th>LS5</th>
<th>LS10</th>
<th>LS1</th>
<th>Surviving</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>296</td>
<td>192</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>915</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1946</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1st New Cycle! \(m = 10010975913705 \)
Largest m value cycle found $m=499317956344211$
Given \((p, q)\), both \(p\) and \(q\) must be \(\equiv 1 \mod 4\)
Introduction
Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices
Restrictions on n
Ascending Wieferich Prime Pairs
Descending Wieferich Prime Pairs
Comparing results

New Family of Binary Sequences
Note: A generalization of Galois sequences

New Family of Polyphase Sequences
L^4 norms of polynomials
Merit Factor Comparisons
Merit Factor

- Given a sequence $A = \{a_k\}_{k=0}^{d-1}$ of length d, recall that the
 aperiodic autocorrelation at shift u is

$$c_u = \sum_{j=0}^{n-d-1} a_j a_{j+u}$$

Definition

The merit factor of A is defined to be

$$MF(A) = \frac{d^2}{2 \sum_{u=0}^{d-1} |c_u|^2}$$

- Engineering Application: measures how large peak energy of a
 signal is compared to total sidelobe energy
Binary vs Polyphase

- *Binary* and *polyphase* sequences with large merit factor are useful!

- **Binary sequence**
 - Values in \{+1, −1\}
 - No known infinite family of sequences for which merit factor grows without bound

- **Polyphase sequence**
 - Values in \(\{e^{\frac{2\pi i}{N}} \cdot q \mid q \in \mathbb{Z}\}\), for some fixed \(N\)
 - Known families of sequences with unbounded (polynomial) merit factor growth
Motivation: Barker Sequences - Binary Sequences with Best Merit Factor?

- Barker sequences appear to have the largest merit factors relative to the length of the sequence.

- Sadly, no Barker sequence of length $N > 13$ is known to exist.
Merit Factor Problem

Let A_n be the set of all binary sequences of length n.

Definition

$$F_n := \max_{A \in A_n} MF(A),$$

the maximal value of the merit factor among sequences of length n.

Open Question (The Merit Factor Problem)
What is $\limsup_{n \to \infty} F_n$?
Families of Binary sequences with Large Merit Factor

- Asymptotically, merit factor of these sequences is a relatively large constant:
 - Legendre: 3
 - Galois: 3
 - Rudin-Shapiro: 3
 - Rotated Legendre: 6
 - Rotated and truncated Legendre: 6.34

- Such infinite families are relatively hard to find
Introduction
Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices
Restrictions on n
Ascending Wieferich Prime Pairs
Descending Wieferich Prime Pairs
Comparing results

New Family of Binary Sequences
Note: A generalization of Galois sequences

New Family of Polyphase Sequences
L^4 norms of polynomials
Merit Factor Comparisons
A generalization of Galois sequences

- Galois sequences - binary sequences based on canonical additive characters of Galois extensions of F_2
- We extend to other prime bases (yielding polyphase sequences) and observe similar behavior

Definition
For prime p and $m \geq 2$, consider the Galois extension F_{p^m} over F_p. The relative trace of F_{p^m} over F_p is

$$\text{Tr}: F_{p^m} \longrightarrow F_p$$

$$\beta \longmapsto \sum_{j=0}^{m-1} \beta^{p^j}$$
Let $\zeta = e^{\frac{2\pi i}{p}}$, and θ be a primitive element of the group $(\mathbb{F}_{p^m})^\ast$.

Definition

The canonical additive character of \mathbb{F}_{p^m} is given by

$$
\chi : \mathbb{F}_{p^m} \longrightarrow \mathbb{F}_p \\
\text{where } c \longmapsto \zeta^{\text{Tr}c}
$$

Then the generalized Galois sequence of length p^m with respect to θ is given by the coefficient sequence of the polynomial

$$
Y_{p,m,\theta}(z) = \sum_{i=0}^{p^m-2} \chi (\theta^i) z^i
$$
Conjecture

Let $y_{p,m,\theta}$ denote the generalized Galois sequence of length p^m with respect to θ. We conjecture that for a fixed prime p, we have

$$\lim_{m \to \infty} MF(y_{p,m,\theta}) = 3$$

and for a fixed exponent m, we have

$$\lim_{p \to \infty} MF(y_{p,m,\theta}) = 3$$
A New Family

- based on rows of certain matrices

Definition

A *Walsh matrix* is a square matrix of dimension 2^k for some integer $k \geq 1$, defined recursively via

$$H_1 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$

$$H_k = \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix} = H_1 \otimes H_{k-1}$$
Dimension 2^1
Dimension 2^2
Dimension 2^4
Dimension 2^8
Dimension 2^{10}
- Above ordering for Walsh Matrix is natural
- Corresponds to the Hadamard Transform (without normalization), equivalent to a multidimensional discrete Fourier transform (DFT) of size $2 \times 2 \times \cdots \times 2$ n times
- We use different ordering due to Bespalov, 2009
Definition

A Walsh matrix in Bespalov ordering is a square matrix of dimension 2^k for some integer $k \geq 1$, defined recursively via

$$V_1 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$V_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \end{bmatrix}$$

$$V_n = \begin{bmatrix} V_{n-1} & V_{n-1}P_{n-1} \\ P_{n-1}V_{n-1} & -P_{n-1}V_{n-1}P_{n-1} \end{bmatrix}$$

where P_n is a $2^n \times 2^n \{0, 1\}$-matrix with 1 on the secondary diagonal.

- New family of binary sequences constructed by concatenating rows of Walsh matrices in Bespalov ordering.
Dimension 2^1
Dimension 2^2
Dimension 2^4
Dimension 2^8
Dimension 2^{10}
Dimension 2^{12}
Experimental Results

Merit factors of Walsh sequences in Bespalov enumeration, length 2^{2n}

<table>
<thead>
<tr>
<th>n</th>
<th>MF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.00000</td>
</tr>
<tr>
<td>2</td>
<td>3.20000</td>
</tr>
<tr>
<td>3</td>
<td>3.04762</td>
</tr>
<tr>
<td>4</td>
<td>3.01176</td>
</tr>
<tr>
<td>5</td>
<td>3.00293</td>
</tr>
<tr>
<td>6</td>
<td>3.00073</td>
</tr>
<tr>
<td>7</td>
<td>3.00018</td>
</tr>
<tr>
<td>8</td>
<td>3.00005</td>
</tr>
</tbody>
</table>
Experimental Results

- Simulated annealing \((10^6\ \text{trials})\) on the matrix row order did not find any better rearrangements

Conjecture

Let \(\{B_n\}\) denote the family of sequences defined via Bespalov’s enumeration of Walsh matrices. Then

\[
\lim_{n \to \infty} MF(B_n) = 3
\]
Introduction

Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices
Restrictions on n
Ascending Wieferich Prime Pairs
Descending Wieferich Prime Pairs
Comparing results

New Family of Binary Sequences
Note: A generalization of Galois sequences

New Family of Polyphase Sequences
L^4 norms of polynomials
Merit Factor Comparisons
Introduction
Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices
Restrictions on n
Ascending Wieferich Prime Pairs
Descending Wieferich Prime Pairs
Comparing results

New Family of Binary Sequences
Note: A generalization of Galois sequences

New Family of Polyphase Sequences
L^4 norms of polynomials
Merit Factor Comparisons
L^4 norms of polynomials

- Provides other viewpoint for Merit Factor Problem
- For each binary (resp. polyphase) sequence $\{a_k\}_{k=0}^{n-1}$, can form polynomials with binary (resp. unimodular) coefficients

$$f_n = \sum_{k=0}^{n-1} a_k z^k$$

Definition

Let $p \geq 1$. For a polynomial $f \in \mathbb{C}[z]$, its L^p norm on the complex unit circle is given by

$$\|f\|_p = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta})|^p \, d\theta \right)^{1/p}$$
\(L^4 \) norm vs. Merit Factor

- Let \(f \in \mathbb{C}[z] \) be of degree \(d - 1 \) with coefficient sequence \(A \).
 By Parseval’s Theorem, write
 \[
 \|f\|_2^2 = d
 \]

- Since \(\bar{z} = 1/z \) on the unit circle,
 \[
 \|f\|_4^4 = \|f(z)\overline{f(z)}\|_2^2 = \sum_{u=1-d}^{d-1} c_u z^u = d^2 + 2 \sum_{u=0}^{d-1} |c_u|^2
 \]

- Thus
 \[
 MF(A) = \frac{d^2}{2 \sum_{u=0}^{d-1} \left| c_u \right|^2} = \frac{\|f\|_2^4}{\|f\|_4^4 - \|f\|_2^4}
 \]
A question due to Littlewood

Question

How slowly can $\|p_n\|^4_4 - \|p_n\|^2_2$ grow for a sequence of polynomials $\{p_n\}$ with unimodular coefficients and increasing degree?

Theorem (Schmidt, 2013)

For the sequence $\{h_N\}$ of polynomials given by

$$h_N(z) = \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \zeta^{jk} z^{iN+k},$$

where $\zeta = e^{2\pi i/N}$, we have

$$\lim_{N \to \infty} \frac{\|h_N\|^4_4 - \|h_N\|^2_2}{\|h_N\|^3_2} = \frac{4}{\pi^2}.$$
A New Family of Polynomials

Definition
For each integer \(N \geq 1 \), write \(\zeta = e^{\frac{2\pi i}{N}} \), \(\omega = e^{\frac{\pi i}{N}} \). Define a new family of polynomials \(\{ f_N \} \), where \(f_N \) is of degree \(N^2 - 1 \), given by

\[
f_N(z) = \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} x(jN+k) z^{jN+k},
\]

where

\[
x_{jN+k} = \begin{cases}
\zeta^k (-\omega)^{j+k}, & \text{if } N \text{ is even} \\
\zeta^k (-\omega)^j (-1)^k, & \text{if } N \text{ is odd}
\end{cases}
\]
Same asymptotic behavior as that of \(\{ h_N \} \):

Proposition

\[
\lim_{N \to \infty} \frac{\| f_N \|_4^4 - \| f_N \|_2^4}{\| f_N \|_2^3} = \frac{4}{\pi^2}
\]
Outline of Proposition

Use Schmidt’s method for determining the asymptotic behavior of the L^4 norm:

- Specializing our previous formula for the L^4 norm,

\[
\| f_N \|_4^4 = N^4 + 2 \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} |c_{uN+v}|^2
\]
Outline of proposition

- (Long) algebraic manipulations on the second sum to obtain Lemma

\[\| f_N \|_4^4 = \begin{cases}
N^4 - N^2 + 8N \sum_{1 \leq v \leq \frac{N}{2}} \sum_{1 \leq k \leq v} \frac{\sin^2 \left(\frac{(2k-1)\pi}{2N} \right)}{\sin^2 \left(\frac{\pi v}{N} \right)} & \text{if } N \text{ is even} \\
N^4 + 8N \sum_{1 \leq v \leq \frac{N-1}{2}} \sum_{1 \leq k \leq v} \frac{\sin^2 \left(\frac{(2k-1)\pi}{2N} \right)}{\sin^2 \left(\frac{\pi v}{N} \right)} & \text{if } N \text{ is odd}
\end{cases} \]
Use an analytic bound to conclude

Lemma

For \(N \geq 1 \), we have

\[
8N \sum_{1 \leq v \leq N} \sum_{1 \leq k \leq v} \frac{\sin^2 \left(\frac{2k-1}{2N} \pi \right)}{\sin^2 \left(\frac{\pi v}{N} \right)} = \frac{4}{\pi^2} N^3 + O(N^2)
\]

Thus

\[
\lim_{N \to \infty} \frac{\|f_N\|_4^4 - \|f_N\|_2^4}{\|f_N\|_2^3} = \frac{\|f_N\|_4^4 - N^4}{N^3} = \frac{4}{\pi^2}.
\]
Open Question

Does there exist a sequence of polynomials with unimodular coefficients whose normalized asymptotic L^4 norm is less than $\frac{4}{\pi^2}$?
Introduction
Circulant Hadamard Matrices

The Search for Circulant Hadamard Matrices
Restrictions on n
Ascending Wieferich Prime Pairs
Descending Wieferich Prime Pairs
Comparing results

New Family of Binary Sequences
Note: A generalization of Galois sequences

New Family of Polyphase Sequences
L^4 norms of polynomials
Merit Factor Comparisons
Some Other Polyphase Sequences with Large Merit Factor Growth Rate

A few length N^2 sequences $\{x_{jN+k}\}_{0 \leq j, k < N}$, with

$$x_{jN+k} = \exp(\pi i \phi_{j,k})$$

where for

- **P1 Sequences:** $\phi_{j,k} = -(N - 2j - 1)(jN + k)/N$
- **Corrected Px Sequences:**
 $$\phi_{j,k} = \begin{cases}
 [(N - 1)/2 - k] [N - 2j - 1]/N & \text{if } N \text{ is even} \\
 [(N - 2)/2 - j] [N - 2k - 1]/N & \text{if } N \text{ is odd}
 \end{cases}$$
- **Frank sequences:** $\phi_{j,k} = 2jk/N$
 (coeff. sequences of Schmidt’s $\{h_N\}$ above)
Comparison with other polyphase sequences

Figure: Merit Factor of Sequences vs. Square Root of Length

- **Blue**: New, Corrected P_x
- **Orange**: Frank, P1
- **Red**: P3, P4, Golomb, Chu
Experiments on Lower Order Terms

- Numerical calculations indicate that asymptotic behaviors of new/Px sequences and Frank sequences agree for order N^2.
- Conjectured that difference is at order about $N^{1.1}$
Goals and Future Work

- Binary merit factor conjectures: Walsh sequences in Bespalov ordering and generalized Galois sequences
- Finding other binary sequences with large asymptotic merit factor
- Does there exist an increasing sequence of polynomials with unimodular coefficients whose normalized asymptotic L^4 norm is less than $\frac{4}{\pi^2}$?
- The Merit Factor Problem: does the maximal value of the merit factor among sequences of length n have a limit as n grows without bound?
Any Questions?
Acknowledgement

We would like to thank

- Professor Michael Mossinghoff
- ICERM and the NSF
- Brown University Center for Computation and Visualization
- TAs
- Helpful comments from Dat Nguyen and Paxton Turner
Bibliography (1)

[BCJ04] Peter Borwein, Kwok-Kwong Stephen Choi, and Jonathan Jedwab.
Binary sequences with merit factor greater than 6.34.

A new enumeration of Walsh matrices.

The discrete Chrestenson transform.
Bibliography (2)

Bibliography (3)

Bibliography (4)

Littlewood polynomials with small L^4 norm.

[Joh75] Donald B. Johnson.
Finding all the elementary circuits of a directed graph.

The L_4 norm of Littlewood polynomials derived from the
Jacobi symbol.

Solutions of the congruence $a^{p-1} \equiv 1 \pmod{p^r}$.
Bibliography (5)

On the equivalence between one-dimensional discrete Walsh-Hadamard and multidimensional discrete Fourier transforms.

[LN94] Rudolf Lidl and Harald Niederreiter.
Introduction to finite fields and their applications.

[LS05] Ka Hin Leung and Bernhard Schmidt.
The field descent method.
Bibliography (6)

Bibliography (8)

On binary sequences.

Character sums and difference sets.